
Outcome	1:	

Subject: Computer	Science Course/Grade	Level: Programming	Challenges	/	
11th-12th

Focus	
Statement:

Students	will	compete	in	programming	compe<<ons	and	u<lize	common	
algorithms	to	solve	the	compe<<on	challenges.

CTE.PROG.1 Students	will	select	a	programming	language	to	use	in	their	
programming	challenges.

Pacing: Local	Code: Components:

Instruct Assess Students	will:

NA NA CTE.PROG.1.1 Choose	from	C,	C++,	and	Java	to	u<lize	during	
programming	challenges.

NA NA CTE.PROG.1.2 Explain	their	ra<onale	for	their	programming	
language	of	choice.

NA NA CTE.PROG.1.3 U<lize	the	standard	input/output	of	their	
programming	language	of	choice.

NA NA CTE.PROG.1.4 Write	comments	in	their	programming	
language	of	choice.

NA NA CTE.PROG.1.5 Create	constant	variables	in	their	programming	
language	of	choice.

NA NA CTE.PROG.1.6 Create	func<ons/methods/subrou<nes	in	their	
programming	language	of	choice.

NA NA CTE.PROG.1.7 U<lize	arrays	in	their	chosen	programming	
language.

NA NA CTE.PROG.1.8 U<lize	two-dimensional	arrays	in	their	chosen	
programming	language.

NA NA CTE.PROG.1.9 U<lize	sen<nels	to	guard	against	arrays	out-of-
bounds	errors.

NA NA CTE.PROG.1.10 Create	records/structures	in	their	chosen	
programming	language.



Outcome	2:	

Outcome	3:	

CTE.PROG.2 Students	will	uGlize	elementary	data	structures	in	their	chosen	
programming	language.

Pacing: Local	Code: Components:

Instruct Assess Students	will:

NA NA CTE.PROG.2.1 U<lize	stacks	in	their	chosen	programming	
language.

NA NA CTE.PROG.2.2 U<lize	queues	in	their	chosen	programming	
language.

NA NA CTE.PROG.2.3 Implement	dic<onaries	in	their	chosen	
programming	language.

NA NA CTE.PROG.2.4 Implement	a	priority	queue	in	their	chosen	
programming	language.

NA NA CTE.PROG.2.5 Implement	sets	in	their	chosen	programming	
language.

NA NA CTE.PROG.2.6 Understand	how	their	chosen	programming	
language	implements	strings.

NA NA CTE.PROG.2.7 Know	some	helpful	string	methods	in	their	
chosen	programming	language.

NA NA CTE.PROG.2.8 Know	the	nine	situa<ons	where	sor<ng	can	be	
used	to	solve	programming	challenges.

NA NA CTE.PROG.2.9 U<lize	built-in	sor<ng	algorithms	in	their	chosen	
programming	language.

CTE.PROG.3 Students	will	uGlize	arithmeGc	algorithms	to	solve	programming	
challenges.

Pacing: Local	Code: Components:

Instruct Assess Students	will:

NA NA CTE.PROG.3.1 U<lize	the	built-in	mathema<cal	methods	in	
their	chosen	programming	language.

NA NA CTE.PROG.3.2 Implement	large	integers	using	arrays	of	digits.

NA NA CTE.PROG.3.3 Implement	addi<on	for	large	integers.



NA NA CTE.PROG.3.4 Implement	subtrac<on	for	large	integers.

NA NA CTE.PROG.3.5 Implement	mul<plica<on	for	large	integers.

NA NA CTE.PROG.3.6 Implement	division	for	large	integers.

NA NA CTE.PROG.3.7 Implement	comparison	opera<ons	for	large	
integers.

NA NA CTE.PROG.3.8 Demonstrate	how	to	compare	real	numbers.

NA NA CTE.PROG.3.9 Manipulate	polynomials	in	their	chosen	
programming	language.

NA NA CTE.PROG.3.10 Determine	if	the	product	rule	applies	to	a	given	
programming	challenge	problem.

NA NA CTE.PROG.3.11 Determine	if	the	sum	rule	applies	to	a	given	
programming	challenge	problem.

NA NA CTE.PROG.3.12 Determine	if	the	inclusion-exclusion	formula	
applies	to	a	given	programming	challenge	
problem.

NA NA CTE.PROG.3.13 Determine	if	a	recurrence	rela<on	applies	to	a	
given	programming	challenge	problem.

NA NA CTE.PROG.3.14 Determine	if	a	binomial	coefficient	applies	to	a	
given	programming	challenge	problem.

NA NA CTE.PROG.3.15 Solve	a	programming	challenge	problem	using	
recursion	and	induc<on.

NA NA CTE.PROG.3.16 Write	an	algorithm	to	determine	if	a	given	
number	is	prime.

NA NA CTE.PROG.3.17 Write	an	algorithm	to	determine	if	a	given	
number	is	divisible	by	another	given	number.

NA NA CTE.PROG.3.18 Write	an	algorithm	to	find	the	greatest	common	
divisor	of	a	given	number.

NA NA CTE.PROG.3.19 Write	an	algorithm	to	find	the	least	common	
mul<ple	of	a	given	number.

NA NA CTE.PROG.3.20 Use	modulus	to	solve	programming	challenge	
problems.



Outcome	4:	

Outcome	5:	

CTE.PROG.4 Students	will	uGlize	backtracking	algorithms	to	solve	problems	with	a	
large	search	space.

Pacing: Local	Code: Components:

Instruct Assess Students	will:

NA NA CTE.PROG.4.1 Write	a	recursive	backtracking	algorithm.

NA NA CTE.PROG.4.2 Use	a	pruning	search	to	remove	candidates	
from	a	possible	solu<on	set.

NA NA CTE.PROG.4.3 Solve	a	programming	challenge	problem	using	a	
backtracking	algorithm.

CTE.PROG.5 Students	will	uGlize	graphs	to	solve	programming	challenge	problems.

Pacing: Local	Code: Components:

Instruct Assess Students	will:

NA NA CTE.PROG.5.1 Demonstrate	the	difference	between	
undirected	and	directed	graphs.

NA NA CTE.PROG.5.2 Demonstrate	the	difference	between	weighted	
and	unweighted	graphs.

NA NA CTE.PROG.5.3 Demonstrate	the	difference	between	cyclic	and	
acyclic	graphs.

NA NA CTE.PROG.5.4 Demonstrate	the	difference	between	simple	
and	non-simple	graphs.

NA NA CTE.PROG.5.5 Demonstrate	the	difference	between	
embedded	and	topological	graphs.

NA NA CTE.PROG.5.6 Demonstrate	the	difference	between	implicit	
and	explicit	graphs.

NA NA CTE.PROG.5.7 Demonstrate	the	difference	between	labeled	
and	unlabeled	graphs.

NA NA CTE.PROG.5.8 Determine	a	data	structure	to	represent	a	graph	
when	solving	a	programming	challenge	
problem.

NA NA CTE.PROG.5.9 Traverse	a	graph	using	a	breadth-first	or	depth-
first	search.



NA NA CTE.PROG.5.10 U<lize	topological	sor<ng	to	solve	problems	
involving	directed	acyclic	graphs.

NA NA CTE.PROG.5.11 Understand	the	basic	principles	of	graph	theory.

NA NA CTE.PROG.5.12 Generate	a	minimum	spanning	tree	using	Prim’s	
algorithm.

NA NA CTE.PROG.5.13 U<lize	Dijkstra’s	algorithm	to	find	the	shortest	
path	in	a	weighted	graph.

NA NA CTE.PROG.5.14 U<lize	Floyd’s	all-pairs	shortest-path	algorithm	
to	length	of	the	shortest	path	between	all	pairs	
of	ver<ces	in	a	given	graph.

NA NA CTE.PROG.5.15 Write	an	algorithm	to	solve	network	flow	
problems.


