Subject: Computer Science | Course/Grade Level: Operating System Design /
11th-12th
Focus Students will show how to build a computer from the ground up from hardware
Statement: logic to the operating system. Students will show how to create the computer
architecture, assembler, programming language, compiler, and operating system.
Outcome 1:
CTE.OSD.1 Students will show how to create more complex logic gates using only
NAND gates.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.OSD.1.1 Show how to represent boolean functions using
truth tables.

NA NA CTE.OSD.1.2 Show how to design a composite logic gate
using primitive logic gates.

NA NA CTE.OSD.1.3 Show how to build and test a composite logic
gate using a hardware description language
(HDL).

NA NA CTE.OSD.1.4 Show how to test a hardware design from an
HDL in a hardware simulator.

NA NA CTE.OSD.1.5 Design an NAND gate in an HDL.

NA NA CTE.OSD.1.6 Design basic logic gates including And, Or, Xor,

Multiplexor (Mux) and Demultiplexer (DMux) in
an HDL.




NA NA CTE.OSD.1.7 Design multi-bit logic gates in an HDL.

NA NA CTE.OSD.1.8 Design multi-way logic gates in an HDL.
Outcome 2:
CTE.OSD.2 Students will show how to use boolean arithmetic to create arithmetic
chips including half-adders, full-adders, adders, incrementers, and
ALUs.
Pacing: Local Code: Components:
Instruct Assess Students will:
NA NA CTE.OSD.2.1 Show how to add binary numbers, including
dealing with overflow.
NA NA CTE.0SD.2.2 Show how to represent signed numbers using
binary.
NA NA CTE.OSD.2.3 Design half-adders, full-adders, and adders in
an HDL.
NA NA CTE.OSD.2.4 Design an incrementer in an HDL.
NA NA CTE.OSD.2.5 Design an arithmetic logic unit (ALU) in an HDL.
Outcome 3:
CTE.OSD.3 Students will show how to build chips that can maintain state such as

registers, memory, and counters using Data Flip-Flop (DFF) gates.

Pacing: Local Code: Components:




Instruct Assess Students will:

NA NA CTE.OSD.3.1 Explain how a computer keeps track of time.

NA NA CTE.OSD.3.2 Explain how a DFF works.

NA NA CTE.OSD.3.3 Design a 1-bit register using DFF gates in an
HDL.

NA NA CTE.0SD.3.4 Design a Random Access Memory (RAM) unit
using DFF gates in an HDL.

NA NA CTE.OSD.3.5 Design a counter using DFF gates in an HDL.

Outcome 4:

CTE.OSD.4 Students will show how to program using machine language.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.OSD.4.1 Explain how memory, the central processing
unit (CPU), and registers work together to run a
program.

NA NA CTE.OSD.4.2 Show how to use arithmetic and logic
operations in a machine language.

NA NA CTE.OSD.4.3 Show how to access memory using direct
addressing, immediate addressing, and indirect
addressing.

NA NA CTE.OSD.4.4 Show how to use conditional jump and

unconditional jump commands to control
program flow.




Outcome 5:

CTE.OSD.5 Students will show how to build a computer from logic gate designs.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.OSD.5.1 Describe the components of a von Neumann
machine.

NA NA CTE.OSD.5.2 Compare and contrast data memory and

instruction memory.

NA NA CTE.OSD.5.3 Describe how a CPU consisting of an arithmetic
logic unit (ALU), registers, and a control unit
processes instructions.

NA NA CTE.OSD.5.4 Explain the differences between data registers,
addressing registers, and a program counter
register.

NA NA CTE.OSD.5.5 Show how memory-mapped I/O can be used to
connect input and output devices to a
computer.

Outcome 6:
CTE.OSD.6 Students will develop an assembler that translates assembly language

into binary code.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.OSD.6.1 Describe the tasks necessary for an assembler
to translate assembly language into binary
instructions.

NA NA CTE.OSD.6.2 Write an assembler for programs with no
symbols.

NA NA CTE.OSD.6.3 Write an assembler for programs with symbols.




Outcome 7:

CTE.OSD.7 Students will develop a virtual machine that will run intermediate

code.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.OSD.7.1 Describe the benefits of a two-tiered translation
model for compiling a high-level computer
language.

NA NA CTE.OSD.7.2 Describe the stack machine model.

NA NA CTE.OSD.7.3 Implement stack arithmetic commands.

NA NA CTE.OSD.7.4 Create push and pop commands for a stack
implementation.

NA NA CTE.OSD.7.5 Implement program flow commands for a
virtual machine.

NA NA CTE.OSD.7.6 Implement function calling commands for a

virtual machine.




Outcome 8:

CTE.OSD.8 Students will build a compiler to translate computer programs from
one language to another.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.0SD.8.1 Describe what a compiler is and its role in the
design of a computer programming language.

NA NA CTE.OSD.8.2 Create a tokenizer to categorize code into
tokens.

NA NA CTE.OSD.8.3 Create a parser to handle lexical elements,
program structure, and statements.

NA NA CTE.0SD.8.4 Create a parser to handle expressions.

NA NA CTE.OSD.8.5 Create a symbol table module as a part of a
syntax analyzer.

NA NA CTE.OSD.8.6 Create a full compiler with code generation
features.




Outcome 9:

CTE.OSD.9 Students will build an operating system.

Pacing: Local Code: Components:

Instruct Assess Students will:

NA NA CTE.O0SD.9.1 Implement a dynamic memory allocation
algorithm for an operating system.

NA NA CTE.0SD.9.2 Develop a system for storing arrays and other
variable-length entities in an operating system.

NA NA CTE.O0SD.9.3 Implement simple math operations such as
addition, subtraction, multiplication, and
division in an operating system.

NA NA CTE.0SD.9.4 Implement mathematical functions such as
absolute value, min, max, and square root in an
operating system.

NA NA CTE.OSD.9.5 Develop a system for using strings in an
operating system.

NA NA CTE.OSD.9.6 Develop a system for writing text to the screen
in an operating system.

NA NA CTE.OSD.9.7 Develop a system for drawing graphics to the
screen in an operating system including color,
lines, rectangles, and circles.

NA NA CTE.O0SD.9.8 Develop a system for accepting input from a
keyboard in an operating system.




