

AP® Computer Science A

Picture Lab
Student Guide

The AP Program wishes to acknowledge and thank
Barbara Ericson of the Georgia Institute of Technology, who developed

this lab and the accompanying documentation.

2

Picture Lab: Student Guide

Introduction
In this lab you will be writing methods that modify digital pictures. In writing these methods you will
learn how to traverse a two-dimensional array of integers or objects. You will also be introduced to
nested loops, binary numbers, interfaces, and inheritance.

Activities
You will be working through a set of activities. These activities will help you learn about how:

 digital pictures are represented on a computer;
 the binary number system is used to represent values;
 to create colors using light;
 Java handles two-dimensional arrays;
 data from a picture is stored; and
 to modify a digital picture.

Set-up
You will need the pixLab folder and a Java Development Kit, also known as a JDK (see
http://www.oracle.com/technetwork/java/javase/downloads/index.html). A development environment is
also useful. DrJava is a free development environment for Java that allows students to try out code in an
interactions pane. It also has a debugger, and can be downloaded from http://drjava.org. However, you
can use any development environment with this lab. Just open the files in the classes folder and
compile them. Please note that there are two small pictures in the classes folder that need to remain
there: leftArrow.gif and rightArrow.gif. If you copy the Java source files to another
folder you must copy these gif files as well.

Keep the images folder and the classes folder together in the pixLab folder. The
FileChooser expects the images to be in a folder called images, at the same level as the
classes folder. If it does not find the images there it also looks in the same folder as the class files
that are executing. If you wish to modify this, change the FileChooser.java class to specify the
folder where the pictures are stored. For example, if you want to store the images in
“r://student/images/,” change the following line in the method getMediaDirectory()
in FileChooser.java:

URL fileURL = new URL(classURL,"../images/");

And modify it to

URL fileURL = new URL("r://student/images/");

Then recompile.

7

A4: Two-dimensional arrays in Java

In this activity you will work with integer data stored in a two-dimensional array. Some programming
languages use a one-dimensional (1D) array to represent a two-dimensional (2D) array with the data in
either row-major or column-major order. Row-major order in a 1D array means that all the data for the
first row is stored before the data for the next row in the 1D array. Column-major order in a 1D array
means that all the data for the first column is stored before the data for the next column in the 1D array.
The order matters, because you need to calculate the position in the 1D array based on the order, the
number of rows and columns, and the current column and row numbers (indices). The rows and
columns are numbered (indexed) and often that numbering starts at 0 as it does in Java. The top left row
has an index of 0 and the top left column has an index of 0. The row number (index) increases from top
to bottom and the column number (index) increases from left to right as shown below.

 0 1 2
0 1 2 3
1 4 5 6

If the above 2D array is stored in a 1D array in row-major order it would be:

0 1 2 3 4 5
1 2 3 4 5 6

If the above 2D array is stored in a 1D array in column-major order it would be:

0 1 2 3 4 5
1 4 2 5 3 6

Java actually uses arrays of arrays to represent 2D arrays. This means that each element in the outer array
is a reference to another array. The data can be in either row-major or column-major order (Figure 4).
The AP Computer Science A course specification tells you to assume that all 2D arrays are row-major,
which means that the outer array in Java represents the rows and the inner arrays represent the columns.

Figure 4: A row-major 2D array (left) and a column-major 2D array (right)

8

The following table shows the Java syntax and examples for tasks with 2D arrays. Java supports 2D
arrays of primitive and object types.

Task Java Syntax Examples
Declare a 2D array

type[][] name int[][] matrix

Pixel[][] pixels
Create a 2D array

new type[nRows][nCols] new int[5][8]

new Pixel[numRows][numCols]

Access an element
name[row][col] int value = matrix[3][2];

Pixel pixel = pixels[r][c];

Set the value of an
element

name[row][col] = value matrix[3][2] = 8;

pixels[r][c] = aPixel;

Get the number of
rows

name.length matrix.length

pixels.length

Get the number of
columns

name[0].length matrix[0].length

pixels[0].length

To loop through the values in a 2D array you must have two indexes. One index is used to change the
row index and one is used to change the column index. You can use nested loops, which is one for
loop inside of another, to loop through all the values in a 2D array.

Here is a method in the IntArrayWorker class that totals all the values in a 2D array of integers in
a private instance variable (field in the class) named matrix. Notice the nested for loop and how it
uses matrix.length to get the number of rows and matrix[0].length to get the number of
columns. Since matrix[0] returns the inner array in a 2D array, you can use
matrix[0].length to get the number of columns.

 public int getTotal()
 {
 int total = 0;
 for (int row = 0; row < matrix.length; row++)
 {
 for (int col = 0; col < matrix[0].length; col++)
 {
 total = total + matrix[row][col];
 }
 }
 return total;
 }

9

Because Java two-dimensional arrays are actually arrays of arrays, you can also get the total using nested
for-each loops as shown in getTotalNested below. The outer loop will loop through the outer
array (each of the rows) and the inner loop will loop through the inner array (columns in that row).
You can use a nested for-each loop whenever you want to loop through all items in a 2D array and
you don't need to know the row index or column index.

 public int getTotalNested()
 {
 int total = 0;
 for (int[] rowArray : matrix)
 {
 for (int item : rowArray)
 {
 total = total + item;
 }
 }
 return total;
 }

Exercises

1. Write a getCount method in the IntArrayWorker class that returns the count of the
number of times a passed integer value is found in the matrix. There is already a method to test
this in IntArrayWorkerTester. Just uncomment the method testGetCount() and
the call to it in the main method of IntArrayWorkerTester.

2. Write a getLargest method in the IntArrayWorker class that returns the largest value
in the matrix. There is already a method to test this in IntArrayWorkerTester. Just
uncomment the method testGetLargest() and the call to it in the main method of
IntArrayWorkerTester.

3. Write a getColTotal method in the IntArrayWorker class that returns the total of all
integers in a specified column. There is already a method to test this in
IntArrayWorkerTester. Just uncomment the method testGetColTotal() and the
call to it in the main method of IntArrayWorkerTester.

	Picture Lab Cover Page.pdf
	Picture Lab Instructions Page
	Activity 4

