

AP® Computer Science A

Elevens Lab

Student Guide

The AP Program wishes to acknowledge and thank the following individuals for their

contributions in developing this lab and the accompanying documentation.
Michael Clancy: University of California at Berkeley

Robert Glen Martin: School for the Talented and Gifted in Dallas, TX
Judith Hromcik: School for the Talented and Gifted in Dallas, TX

Activity 6 - 19 - Elevens Student Lab Guide

Activity 6: Playing Elevens

Introduction:
In this activity, the game Elevens will be explained, and you will play an interactive version of the game.

Exploration:

The solitaire game of Elevens uses a deck of 52 cards, with ranks A (ace), 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack),
Q (queen), and K (king), and suits ♣ (clubs), ♦ (diamonds), ♥ (hearts), and ♠ (spades). Here is how it
is played.

1. The deck is shuffled, and nine cards are dealt “face up” from the deck to the board.
2. Then the following sequence of steps is repeated:

a. The player removes each pair of cards (A, 2, … , 10) that total 11, e.g., an 8 and a 3, or a 10
and an A. An ace is worth 1, and suits are ignored when determining cards to remove.

b. Any triplet consisting of a J, a Q, and a K is also removed by the player. Suits are also ignored
when determining which cards to remove.

c. Cards are dealt from the deck if possible to replace the cards just removed.

The game is won when the deck is empty and no cards remain on the table. Here’s a sample game, in
which underlined cards are replacements from the deck.

Cards on the Table Explanation

K♠ 10♦ J♣ 2♣ 2♥ 9♦ 3♥ 5♠ 5♦ initial deal

K♠ 10♦ J♣ 7♦ 2♥ Q♠ 3♥ 5♠ 5♦ remove 2♣ (either 2 would work) and 9♦

A♠ 10♦ 9♣ 7♦ 2♥ 7♣ 3♥ 5♠ 5♦ remove J♣ Q♠ K♠

A♠ 10♦ 10♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 9♣ and 2♥ (removing A♠ and 10♦ would
have been legal here too)

2♠ 10♦ 9♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♠ and 10♠ (10♦ could have been removed
instead)

A♣ 10♦ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 2♠ and 9♠

6♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♣ and 10♦

Activity 6 - 20 - Elevens Student Lab Guide

2♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ Q♦ remove 6♦ and one of the 5s; no further plays are
possible; game is lost.

An interactive GUI version of Elevens allows one to play by clicking card images and buttons rather than
by handling actual cards. When Elevens.jar is run, the cards on the board are displayed in a window.
Clicking on an unselected card selects it; clicking on a selected card unselects it. Clicking on the Replace
button first checks that the selection is legal; if so, it does the removal and deals cards to fill the empty
slots. Clicking on the Restart button restarts the game.

The folder Activity6 Starter Code contains the file Elevens.jar that, when executed, runs a
GUI-based implementation. In a Windows environment, you may be able to run it by double-clicking
on it. Otherwise you can run it with the command

java –jar Elevens.jar

Play a few games of Elevens. How many did you win?

Questions:

1. List all possible plays for the board 5♠ 4♥ 2♦ 6♣ A♠ J♥ K♦ 5♣ 2♠

2. If the deck is empty and the board has three cards left, must they be J, Q, and K? Why or why not?

3. Does the game involve any strategy? That is, when more than one play is possible, does it matter
which one is chosen? Briefly explain your answer.

Activity 7 - 21 - Elevens Student Lab Guide

Activity 7: Elevens Board Class Design

Introduction:

Now that the Card and Deck classes are completed, the next class to design is ElevensBoard.
This class will contain the state (instance variables) and behavior (methods) necessary to play the game of
Elevens.

Questions:

1. What items would be necessary if you were playing a game of Elevens at your desk (not on the
computer)? List the private instance variables needed for the ElevensBoard class.

2. Write an algorithm that describes the actions necessary to play the Elevens game.

3. Now examine the partially implemented ElevensBoard.java file found in the Activity7

Starter Code directory. Does the ElevensBoard class contain all the state and behavior
necessary to play the game?

Activity 7 - 22 - Elevens Student Lab Guide

4. ElevensBoard.java contains three helper methods. These helper methods are private
because they are only called from the ElevensBoard class.

a. Where is the dealMyCards method called in ElevensBoard?

b. Which public methods should call the containsPairSum11 and containsJQK
methods?

c. It’s important to understand how the cardIndexes method works, and how the list that it
returns is used. Suppose that cards contains the elements shown below. Trace the execution
of the cardIndexes method to determine what list will be returned. Complete the diagram
below by filling in the elements of the returned list, and by showing how those values index
cards. Note that the returned list may have less than 9 elements.

 cards ->

 returned ->
 list

0 1 2 3 4 5 6 7 8

J♥ 6♣ null 2♠ null null A♠ 4♥ null

0 1 2 3 4 5 6 7 8

Activity 7 - 23 - Elevens Student Lab Guide

d. Complete the following printCards method to print all of the elements of cards that are

indexed by cIndexes.

public static printCards(ElevensBoard board) {
 List<Integer> cIndexes = board.cardIndexes();

 /* Your code goes here. */

}

e. Which one of the methods that you identified in question 4b above needs to call the
cardIndexes method before calling the containsPairSum11 and containsJQK
methods? Why?

Activity 7 - 24 - Elevens Student Lab Guide

Activity 8 - 25 - Elevens Student Lab Guide

Activity 8: Using an Abstract Board Class

Introduction:

The Elevens game belongs to a set of related solitaire games. In this activity you will learn about some of
these related games. Then you will see how inheritance can be used to reuse the code that is common to
all of these games without rewriting it.

Exploration: Related Games

Thirteens

A game related to Elevens, called Thirteens, uses a 10-card board. Ace, 2, … , 10, jack, queen correspond
to the point values of 1, 2, …, 10, 11, 12. Pairs of cards whose point values add up to 13 are selected and
removed. Kings are selected and removed singly. Chances of winning are claimed to be about 1 out of 2.

Tens

Another relative of Elevens, called Tens, uses a 13-card board. Pairs of cards whose point values add to 10
are selected and removed, as are quartets of kings, queens, jacks, and tens, all of the same rank (for

example, K♠, K♥, K♦, and K♣). Chances of winning are claimed to be about 1 in 8 games.

Exploration: Abstract Classes

In reading the descriptions of Elevens and its related games, it is evident that these games share common
state and behaviors. Each game requires:

• State (instance variables) — a deck of cards and the cards “on the” board.

• Behavior (methods) — to deal the cards, to remove and replace selected cards, to check for a win,
to check if selected cards satisfy the rules of the game, to see if there are more legal selections
available, and so on.

With all of this state and behavior in common, it would seem that inheritance could allow us to write code
once and reuse it, instead of having to copy it for each different game.

But how? If we use the “IS-A” test, a ThirteensBoard “IS-A” ElevensBoard is not true. They
have a lot in common, but an inheritance relationship between the two does not exist. So how do we
create an inheritance hierarchy to take advantage of the commonalities between these two related boards?

Activity 8 - 26 - Elevens Student Lab Guide

The answer is to use a common superclass. Take all the state and behavior that these boards have in
common and put them into a new Board class. Then have ElevensBoard, TensBoard, and
ThirteensBoard inherit from the Board class. This makes sense because each of them is just a
different kind of board. An ElevensBoard “IS-A” Board, a ThirteensBoard “IS-A”
Board, and a TensBoard “IS-A” Board. A diagram that shows the inheritance relationships of
these classes is included below. Note that Board is shown as abstract. We’ll discuss why later.

Let’s see how this works out for dividing up our original ElevensBoard code from Activity 7.
Because all these games need a deck and the cards on the board, all of the instance variables can go into
Board. Some methods, like deal, will work the same for every game, so they should be in Board
too. Methods like containsJQK are Elevens-specific and should be in ElevensBoard. So far,
so good.

But what should we do with the isLegal and anotherPlayIsPossible methods? Every
Elevens-related game will have both of these methods, but they need to work differently for each different
game. That’s exactly why Java has abstract methods. Because each of these games needs isLegal
and anotherPlayIsPossible methods, we include those methods in Board. However, because
the implementation of these methods depends on the specific game, we make them abstract in
Board and don’t include their implementations there. Also, because Board now contains
abstract methods, it must also be specified as abstract. Finally, we override each of these
abstract methods in the subclasses to implement their specific behavior for that game.

But if we have to implement isLegal and anotherPlayIsPossible in each game-specific
board class, why do we need to have the abstract methods in Board? Consider a class the uses a
board, such as the GUI program you used in Activity 6. Such a class is called a client of the Board class.

Activity 8 - 27 - Elevens Student Lab Guide

The GUI program does not actually need to know what kind of a game it is displaying! It only knows that

the board that was provided “IS-A” Board, and it only “knows” about the methods in the Board
class. The GUI program is only able to call isLegal and anotherPlayIsPossible because
they are included in Board.

Finally, we need to understand how the GUI program is able to execute the correct isLegal and
anotherPlayIsPossible methods. When the GUI program starts, it is provided an object of a
class that inherits from Board. If you want to play Elevens, you provide an ElevensBoard object.
If you want to play Tens, you provide a TensBoard object. So, when the GUI program uses that object
to call isLegal or anotherPlayIsPossible, it automatically uses the method implementation
included in that particular object. This is known as polymorphism.

Questions:

1. Discuss the similarities and differences between Elevens, Thirteens, and Tens.

2. As discussed previously, all of the instance variables are declared in the Board class. But it is the
ElevensBoard class that “knows” the board size, and the ranks, suits, and point values of the
cards in the deck. How do the Board instance variables get initialized with the ElevensBoard
values? What is the exact mechanism?

3. Now examine the files Board.java, and ElevensBoard.java, found in the Activity8
Starter Code directory. Identify the abstract methods in Board.java. See how these
methods are implemented in ElevensBoard. Do they cover all the differences between Elevens,
Thirteens, and Tens as discussed in question 1? Why or why not?

Glossary - 39 - Elevens Student Lab Guide

Glossary

assertion: Boolean expressions that should be true if the program is running correctly. The Java
assert statement can be used to check assertions in a program.

class invariant: A logical statement relating to the values of the instance variables of a class that is
always true between calls to the class’s methods (also referred to as a “data invariant”).
(“Invariant” means “not varying” or “not changing.”)

client class: A class that uses another class (e.g., The Deck class is a client of the Card class.).

helper method: A method, usually private, that is called by another method. Helper methods are
used to simplify the calling method. They also facilitate code reuse when they provide a function
that can be used by more than one calling method.

loop invariant: A logical statement that is always true when execution reaches a loop’s termination
test.

model: A class with behaviors and state that represent key features of some “real-world” object or
process. We say that a class models the “real-world” object. For example, the Deck class models
a real deck of cards.

perfect shuffle: A card-shuffling method that starts with dividing the deck into two stacks, then
interleaving the cards, first a card from stack 1, then a card from stack 2, then another card from
stack 1, another from stack 2, and so on.

permutation: A rearrangement of a given sequence of values. There are six permutations of the
sequence [1,2,3], namely [1,2,3] (the “identity” permutation), [1,3,2], [2,1,3], [2,3,1], [3,1,2], and
[3,2,1]. If the given sequence contains duplicate values, so will its permutations. For example, the
permutations of [1,1,2] are [1,1,2], [1,2,1], and [2,1,1].

polymorphism: A process that Java uses where the method to execute is based on the object executing
the method. For example, if board.anotherPlayIsPossible() is executed, and
board references an ElevensBoard object, then the ElevensBoard
anotherPlayIsPossible method will be called.

probabilistic: Based on chance or involving the use of randomness.

pseudo-random number generator: A procedure that produces a sequence of values that passes
various statistical tests for randomness (e.g., any value is just as likely to occur in a given position
in the sequence as any other).

Glossary - 40 - Elevens Student Lab Guide

random number generator: See pseudo-random number generator.

refactor: Reorganizing code. One example of refactoring is creating helper methods to simplify code
or eliminate duplicate code. Another is splitting a class into a superclass and a subclass, putting
the code that would be common to other subclasses into the new superclass.

selection shuffle: A card-shuffling method that works similarly to the selection sort. It randomly
selects a card for each position in the deck from the remaining unselected cards.

shuffle: A method of permuting (mixing up) the cards in a deck. See perfect shuffle and selection
shuffle.

simulation: Imitation, using a computer program, of some real-world process. The “actors” in the
process correspond to objects and variables in the simulation, while the interactions between the
actors correspond to program methods.

systematic: Performed using a logical step-by-step process.

truncation: Removal of the fractional part of a real or double value, producing an integer.

References

The Complete Book of Solitaire and Patience Games, by Albert H. Morehead and Geoffrey Mott-Smith,
Bantam Books (1977).

	q6-1:
	q7-1:
	q7-2:
	q7-3:
	q7-4a:
	q7-4c-0:
	q7-4c-1:
	q7-4c-2:
	q7-4c-3:
	q7-4c-4:
	q7-4c-5:
	q7-4c-6:
	q7-4c-7:
	q7-4c-8:
	q7-4b:
	q7-4e:
	q7-4d:
	q8-2:
	q8-1:
	q8-3:
	q6-2:
	q6-3:

