

AP® Computer Science A

Elevens Lab

Student Guide

The AP Program wishes to acknowledge and thank the following individuals for their

contributions in developing this lab and the accompanying documentation.
Michael Clancy: University of California at Berkeley

Robert Glen Martin: School for the Talented and Gifted in Dallas, TX
Judith Hromcik: School for the Talented and Gifted in Dallas, TX

Activity 4 - 7 - Elevens Student Lab Guide

Activity 3: Shuffling the Cards in a Deck

Introduction:

Think about how you shuffle a deck of cards by hand. How well do you think it randomizes the cards in
the deck?

Exploration:

We now consider the shuffling of a deck, that is, the permutation of its cards into a random-looking
sequence. A requirement of the shuffling procedure is that any particular permutation has just as much
chance of occurring as any other. We will be using the Math.random method to generate random
numbers to produce these permutations.

Several ideas for designing a shuffling method come to mind. We will consider two:

Perfect Shuffle

Card players often shuffle by splitting the deck in half and then interleaving the two half-decks, as shown
below.

This procedure is called a perfect shuffle if the interleaving alternates between the two half-decks.
Unfortunately, the perfect shuffle comes nowhere near generating all possible deck permutations.
In fact, eight shuffles of a 52-card deck return the deck to its original state!

Activity 4 - 8 - Elevens Student Lab Guide

Consider the following “perfect shuffle” algorithm that starts with an array named cards that contains
52 cards and creates an array named shuffled.

Initialize shuffled to contain 52 “empty” elements.
Set k to 0.
For j = 0 to 25,

− Copy cards[j] to shuffled[k];
− Set k to k+2.

Set k to 1.
For j = 26 to 51,

− Copy cards[j] to shuffled[k];
− Set k to k+2.

This approach moves the first half of cards to the even index positions of shuffled, and it moves
the second half of cards to the odd index positions of shuffled.

The above algorithm shuffles 52 cards. If an odd number of cards is shuffled, the array shuffled has
one more even-indexed position than odd-indexed positions. Therefore, the first loop must copy one
more card than the second loop does. This requires rounding up when calculating the index of the middle
of the deck. In other words, in the first loop j must go up to (cards.length + 1) / 2,
exclusive, and in the second loop j most begin at (cards.length + 1) / 2.

Selection Shuffle

Consider the following algorithm that starts with an array named cards that contains 52 cards and
creates an array named shuffled. We will call this algorithm the “selection shuffle.”

Initialize shuffled to contain 52 “empty” elements.
Then for k = 0 to 51,

− Repeatedly generate a random integer j between 0 and 51, inclusive until
cards[j] contains a card (not marked as empty);

− Copy cards[j] to shuffled[k];
− Set cards[j] to empty.

This approach finds a suitable card for the kth position of the deck. Unsuitable candidates are any cards
that have already been placed in the deck.

While this is a more promising approach than the perfect shuffle, its big defect is that it runs too slowly.
Every time an empty element is selected, it has to loop again. To determine the last element of
shuffled requires an average of 52 calls to the random number generator.

Activity 4 - 9 - Elevens Student Lab Guide

A better version, the “efficient selection shuffle,” works as follows:

For k = 51 down to 1,
− Generate a random integer r between 0 and k, inclusive;
− Exchange cards[k] and cards[r].

This has the same structure as selection sort:

For k = 51 down to 1,
− Find r, the position of the largest value among cards[0] through cards[k];
− Exchange cards[k] and cards[r].

The selection shuffle algorithm does not require to a loop to find the largest (or smallest) value to swap, so
it works quickly.

Exercises:

1. Use the file Shuffler.java, found in the Activity3 Starter Code, to implement the perfect
shuffle and the efficient selection shuffle methods as described in the Exploration section of this
activity. You will be shuffling arrays of integers.

2. Shuffler.java also provides a main method that calls the shuffling methods. Execute the
main method and inspect the output to see how well each shuffle method actually randomizes the
array elements. You should execute main with different values of SHUFFLE_COUNT and
VALUE_COUNT.

Questions:

1. Write a static method named flip that simulates a flip of a weighted coin by returning either
"heads" or "tails" each time it is called. The coin is twice as likely to turn up heads as tails.
Thus, flip should return "heads" about twice as often as it returns "tails."

2. Write a static method named arePermutations that, given two int arrays of the same length
but with no duplicate elements, returns true if one array is a permutation of the other (i.e., the
arrays differ only in how their contents are arranged). Otherwise, it should return false.

3. Suppose that the initial contents of the values array in Shuffler.java are {1, 2, 3,
4}. For what sequence of random integers would the efficient selection shuffle change values to
contain {4, 3, 2, 1}?

Activity 4 - 11 - Elevens Student Lab Guide

Activity 4: Adding a Shuffle Method to the Deck
Class

Introduction:

You implemented a Deck class in Activity 2. This class should be complete except for the shuffle
method. You also implemented a DeckTester class that you used to test your incomplete Deck
class.

In Activity 3, you implemented methods in the Shuffler class, which shuffled integers.

Now you will use what you learned about shuffling in Activity 3 to implement the Deck shuffle
method.

Exercises:

1. The file Deck.java, found in the Activity4 Starter Code folder, is a correct solution from
Activity 2. Complete the Deck class by implementing the shuffle method. Use the efficient
selection shuffle algorithm from Activity 3.

Note that the Deck constructor creates the deck and then calls the shuffle method. The
shuffle method also needs to reset the value of size to indicate that all of the cards can be
dealt again.

2. The DeckTester.java file, found in the Activity4 Starter Code folder, provides a basic set
of Deck tests. It is similar to the DeckTester class you might have written in Activity 2.
Add additional code at the bottom of the main method to create a standard deck of 52 cards and
test the shuffle method. You can use the Deck toString method to “see” the cards after
every shuffle.

Glossary - 39 - Elevens Student Lab Guide

Glossary

assertion: Boolean expressions that should be true if the program is running correctly. The Java
assert statement can be used to check assertions in a program.

class invariant: A logical statement relating to the values of the instance variables of a class that is
always true between calls to the class’s methods (also referred to as a “data invariant”).
(“Invariant” means “not varying” or “not changing.”)

client class: A class that uses another class (e.g., The Deck class is a client of the Card class.).

helper method: A method, usually private, that is called by another method. Helper methods are
used to simplify the calling method. They also facilitate code reuse when they provide a function
that can be used by more than one calling method.

loop invariant: A logical statement that is always true when execution reaches a loop’s termination
test.

model: A class with behaviors and state that represent key features of some “real-world” object or
process. We say that a class models the “real-world” object. For example, the Deck class models
a real deck of cards.

perfect shuffle: A card-shuffling method that starts with dividing the deck into two stacks, then
interleaving the cards, first a card from stack 1, then a card from stack 2, then another card from
stack 1, another from stack 2, and so on.

permutation: A rearrangement of a given sequence of values. There are six permutations of the
sequence [1,2,3], namely [1,2,3] (the “identity” permutation), [1,3,2], [2,1,3], [2,3,1], [3,1,2], and
[3,2,1]. If the given sequence contains duplicate values, so will its permutations. For example, the
permutations of [1,1,2] are [1,1,2], [1,2,1], and [2,1,1].

polymorphism: A process that Java uses where the method to execute is based on the object executing
the method. For example, if board.anotherPlayIsPossible() is executed, and
board references an ElevensBoard object, then the ElevensBoard
anotherPlayIsPossible method will be called.

probabilistic: Based on chance or involving the use of randomness.

pseudo-random number generator: A procedure that produces a sequence of values that passes
various statistical tests for randomness (e.g., any value is just as likely to occur in a given position
in the sequence as any other).

Glossary - 40 - Elevens Student Lab Guide

random number generator: See pseudo-random number generator.

refactor: Reorganizing code. One example of refactoring is creating helper methods to simplify code
or eliminate duplicate code. Another is splitting a class into a superclass and a subclass, putting
the code that would be common to other subclasses into the new superclass.

selection shuffle: A card-shuffling method that works similarly to the selection sort. It randomly
selects a card for each position in the deck from the remaining unselected cards.

shuffle: A method of permuting (mixing up) the cards in a deck. See perfect shuffle and selection
shuffle.

simulation: Imitation, using a computer program, of some real-world process. The “actors” in the
process correspond to objects and variables in the simulation, while the interactions between the
actors correspond to program methods.

systematic: Performed using a logical step-by-step process.

truncation: Removal of the fractional part of a real or double value, producing an integer.

References

The Complete Book of Solitaire and Patience Games, by Albert H. Morehead and Geoffrey Mott-Smith,
Bantam Books (1977).

