

AP® Computer Science A

Elevens Lab

Student Guide

The AP Program wishes to acknowledge and thank the following individuals for their

contributions in developing this lab and the accompanying documentation.
Michael Clancy: University of California at Berkeley

Robert Glen Martin: School for the Talented and Gifted in Dallas, TX
Judith Hromcik: School for the Talented and Gifted in Dallas, TX

Activity 2 - 5 - Elevens Student Lab Guide

Activity 2: Initial Design of a Deck Class

Introduction:

Think about a deck of cards. How would you describe a deck of cards? When you play card games,
what kinds of operations do these games require a deck to provide?

 Exploration:
Now consider implementing a class to represent a deck of cards. Describe its instance variables and
methods, and discuss your design with a classmate.

Read the partial implementation of the Deck class available in the Activity2 Starter Code folder.
This file contains the instance variables, constructor header, and method headers for a Deck class
general enough to be useful for a variety of card games. Discuss the Deck class with your classmates;
in particular, make sure you understand the role of each of the parameters to the Deck constructor,
and of each of the private instance variables in the Deck class.

Exercises:

1. Complete the implementation of the Deck class by coding each of the following:

• Deck constructor — This constructor receives three arrays as parameters. The arrays contain
the ranks, suits, and point values for each card in the deck. The constructor creates an
ArrayList, and then creates the specified cards and adds them to the list.
For example, if ranks = {"A", "B", "C"}, suits = {"Giraffes", "Lions"},
and values = {2,1,6}, the constructor would create the following cards:

["A", "Giraffes", 2], ["B", "Giraffes", 1], ["C", "Giraffes", 6],
["A", "Lions", 2], ["B", "Lions", 1], ["C", "Lions", 6]

and would add each of them to cards. The parameter size would then be set to the size of
cards, which in this example is 6.

Finally, the constructor should shuffle the deck by calling the shuffle method. Note that you
will not be implementing the shuffle method until Activity 4.

• isEmpty — This method should return true when the size of the deck is 0; false
otherwise.

• size — This method returns the number of cards in the deck that are left to be dealt.

Activity 2 - 6 - Elevens Student Lab Guide

• deal — This method “deals” a card by removing a card from the deck and returning it, if there
are any cards in the deck left to be dealt. It returns null if the deck is empty. There are several
ways of accomplishing this task. Here are two possible algorithms:
Algorithm 1: Because the cards are being held in an ArrayList, it would be easy to simply
call the List method that removes an object at a specified index, and return that object.
Removing the object from the end of the list would be more efficient than removing it from the
beginning of the list. Note that the use of this algorithm also requires a separate “discard” list to
keep track of the dealt cards. This is necessary so that the dealt cards can be reshuffled and dealt
again.
Algorithm 2: It would be more efficient to leave the cards in the list. Instead of removing the
card, simply decrement the size instance variable and then return the card at size. In this
algorithm, the size instance variable does double duty; it determines which card to “deal” and
it also represents how many cards in the deck are left to be dealt. This is the algorithm that you
should implement.

2. Once you have completed the Deck class, find DeckTester.java file in the Activity2 Starter
Code folder. Add code in the main method to create three Deck objects and test each method for
each Deck object.

Questions:

1. Explain in your own words the relationship between a deck and a card.

2. Consider the deck initialized with the statements below. How many cards does the deck contain?

 String[] ranks = {"jack", "queen", "king"};
 String[] suits = {"blue", "red"};
 int[] pointValues = {11, 12, 13};
 Deck d = new Deck(ranks, suits, pointValues);

3. The game of Twenty-One is played with a deck of 52 cards. Ranks run from ace (highest) down to 2
(lowest). Suits are spades, hearts, diamonds, and clubs as in many other games. A face card has point
value 10; an ace has point value 11; point values for 2, …, 10 are 2, …, 10, respectively. Specify the
contents of the ranks, suits, and pointValues arrays so that the statement

 Deck d = new Deck(ranks, suits, pointValues);

 initializes a deck for a Twenty-One game.

4. Does the order of elements of the ranks, suits, and pointValues arrays matter?

Glossary - 39 - Elevens Student Lab Guide

Glossary

assertion: Boolean expressions that should be true if the program is running correctly. The Java
assert statement can be used to check assertions in a program.

class invariant: A logical statement relating to the values of the instance variables of a class that is
always true between calls to the class’s methods (also referred to as a “data invariant”).
(“Invariant” means “not varying” or “not changing.”)

client class: A class that uses another class (e.g., The Deck class is a client of the Card class.).

helper method: A method, usually private, that is called by another method. Helper methods are
used to simplify the calling method. They also facilitate code reuse when they provide a function
that can be used by more than one calling method.

loop invariant: A logical statement that is always true when execution reaches a loop’s termination
test.

model: A class with behaviors and state that represent key features of some “real-world” object or
process. We say that a class models the “real-world” object. For example, the Deck class models
a real deck of cards.

perfect shuffle: A card-shuffling method that starts with dividing the deck into two stacks, then
interleaving the cards, first a card from stack 1, then a card from stack 2, then another card from
stack 1, another from stack 2, and so on.

permutation: A rearrangement of a given sequence of values. There are six permutations of the
sequence [1,2,3], namely [1,2,3] (the “identity” permutation), [1,3,2], [2,1,3], [2,3,1], [3,1,2], and
[3,2,1]. If the given sequence contains duplicate values, so will its permutations. For example, the
permutations of [1,1,2] are [1,1,2], [1,2,1], and [2,1,1].

polymorphism: A process that Java uses where the method to execute is based on the object executing
the method. For example, if board.anotherPlayIsPossible() is executed, and
board references an ElevensBoard object, then the ElevensBoard
anotherPlayIsPossible method will be called.

probabilistic: Based on chance or involving the use of randomness.

pseudo-random number generator: A procedure that produces a sequence of values that passes
various statistical tests for randomness (e.g., any value is just as likely to occur in a given position
in the sequence as any other).

Glossary - 40 - Elevens Student Lab Guide

random number generator: See pseudo-random number generator.

refactor: Reorganizing code. One example of refactoring is creating helper methods to simplify code
or eliminate duplicate code. Another is splitting a class into a superclass and a subclass, putting
the code that would be common to other subclasses into the new superclass.

selection shuffle: A card-shuffling method that works similarly to the selection sort. It randomly
selects a card for each position in the deck from the remaining unselected cards.

shuffle: A method of permuting (mixing up) the cards in a deck. See perfect shuffle and selection
shuffle.

simulation: Imitation, using a computer program, of some real-world process. The “actors” in the
process correspond to objects and variables in the simulation, while the interactions between the
actors correspond to program methods.

systematic: Performed using a logical step-by-step process.

truncation: Removal of the fractional part of a real or double value, producing an integer.

References

The Complete Book of Solitaire and Patience Games, by Albert H. Morehead and Geoffrey Mott-Smith,
Bantam Books (1977).

	Cover Page
	Activity 2.pdf
	Glossary

